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Motivation

« Zero-Shot Text Classification: No data available for fine-tuning

» Standard classifier: Needs finetuning for the classification head

* The pattern-verbalizer approach
* Input: Overpriced, salty and overrated! The restaurant is [MASK].
 Output with MLM head: great/awful
 Sensitive to the choice of specific pattern/verbalizer pairs

 Question: Could we curate datasets with label descriptions to
improve zero-shot text classification performance for this approach?
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Overview (Data Construction + Finetuning)
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Add Pattern to Create

Text Input for Finetuning

Hyperparameters, such as training steps, are fixed
for all datasets, tuned on the 20 Newsgroups data.

ﬂxt Input (label desc. data + pattern ) \

/

1) “sports Question: What is the topic of this
article? Answer: [MASK].”

2) “racing Question: What is the topic of this _>[ Model ]
article? Answer: [MASK].”

3) “Sport pertains to any form of competitive

physical activity or ... Question: What is the
topic of this article? Answer: [MASK].”

o /




Overview (Inferencing)

Test data from AGNews

“Need for carbon sink technologies Climate scientists tell a

conference that greater efforts should be made to pull CO2
from the atmosphere.”

Test data + pattern l

“Need for carbon sink technologies Climate scientists tell a
conference that greater efforts should be made to pull CO2

from the atmosphere. Question: What is the topic of this
article? Answer: [MASK].”

,
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[ Model ]
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Examples of LabelDesc data

* Examples of LabelDesc data for sentiment classification

Label

Input

Very Negative

awful

It was terrible.

A horrendous experience.
Just horrible.

Overall, it was dreadful.

Very Positive

great

It was amazing.

An excellent experience.
Just fantastic.

Overall, it was outstanding.

* Related terms to the label:
« awful
e terrible

» Simple hand-crafted templates:
It was t.

* t could be replaced by the
terms above.



Results and Evaluations

* Comparison against SOTA results (RoBERTa-base) using a single
pattern with LabelDescTraining

AGNews Yahoo  DBPedia Yelp-2  SST-2 Amz-2  IMDB

LabelDescTraining 84.6+0.3 59.9+03 82.4+1.2 84.840.6 88.2+0.2 89.6+04 83.4+0.4
Chu et al. (2021a) 68.8 57.8 81.9 67.3 65.0 66.8

Chu et al. (2021b) 75.1 60.0 88.6

van de Kar et al. (2022)  79.2 56.1 80.4 92.0 85.6 92.0 86.7

» Sentiment classification: Our method is better than dataless
classification (Chu et al. 2021a) and competitive with mining-based
approach, van de Kar et al. (2022)

* Topic classification: Our method is better than that of van de Kar
et al. (2022)

*All our results are averaged over 3 random seeds 1o



Results and Evaluations

* LDT: LabelDescTraining

N

AGNews  Yahoo DBPedia Yelp-5 SST-5 Yelp-2 SST-2 Amz-2 IMDB / Avg. \
_shot b 62.7+7.4 41.54+7.0 54.64+18.9 38.04+4.3 35.64+4.3 63.64+10.7 62.64+11.0 64.0410.3 69.9413.2 54.749.7
ZEIO-SNOL 1 68.0478 477482 639497 387478 350477  70.6+157  63.7+143  67.5+137 7414170 NS58.8+113
fpp—
LDT b 61.8+7.0 494452 729478 34.6+4.6 36.543.7 67.7+10.3 63.4+9.7 67.2+9.6 72.5+10.5 58.447.6
WNG 724468 544443 7194108 363457  36.6+7.1  63.4+130  56.9487 60.9+£102  67.5+£152 | 57.849.1
LDT b 77.44+49 58.84+1.6 79.54+4.4 43.642.1 42.0+1.6 88.34+2.5 84.5422 88.6+1.4 86.9+1.8 722425
l 79.445.0 60.84-2.1 86.6+3.0 51.3424 49241.6 94.6+1.8 91.342.0 941413 92.14+1.2 77.742.3
MLM b 77.34+4.0 54.343.9 81.34+73 38.143.8 37.04+3.2 78.44+10.0 73.347.9 80.0+9.9 73.849.6 65.94-6.6
r l 75.245.0 58.04+3.0 85.44+13.0 46.4+3.3 434429 90.8+7.6 84.14+6.8 90.2+7.1 87.446.2 73.44+6.1
MLM b 73.14+5.6 50.14+54 72.6+8.1 36.84-2.8 35.842.5 80.1+7.2 75.845.0 81.846.8 76.746.0 64.8+5.5
m l 66.44-8.6 44.5449 73.1473 41.94+4.0 38.74+4.2 83.6+6.5 78.146.0 85.0+6.0 77.74+6.9 65.44-6.0
classifier b 72.545.5 57.140.7 87.742.6 40.3+1.3 39.442.5 86.94+2.9 79.741.1 89.1+0.9 80.643.6 70.442.3
l 77.841.5 50.947.3 78.24+1.0 42.441.6 35.349.2 93.3+0.9 86.6+1.4 93.74+0.5 85.742.0 71.542.8

« Zero-shot v.s. LDT (averaged across 3 random seeds, 14 patterns)
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Results and Evaluations

* LDT: LabelDescTraining

* LDT2onag: LDT finetuned on 20Newsgroup data

* MLM:;: verbalizer embedding randomly initialized

* MLMm: mismatched label and verbalizers

« classifier: classifier without patterns

N

AGNews  Yahoo DBPedia Yelp-5 SST-5 Yelp-2 SST-2 Amz-2 IMDB / Avg. \
_shot b 62.7+7.4 41.54+7.0 54.64+18.9 38.04+4.3 35.64+4.3 63.64+10.7 62.64+11.0 64.0410.3 69.9413.2 54.749.7
ZEIO-SNOL 1 68.0478 477482 639497 387478 350477  70.6+157  63.7+143  67.5+137 7414170 NS58.8+113
fpp—
LDT b 61.847.0 494452 729478 34.6+4.6 36.543.7 67.7+10.3 63.4+9.7 67.2+9.6 72.5+10.5 58.447.6
WNG 724468 544443 7194108 363457  36.6+7.1  63.4+130  56.9487 60.9+£102  67.5+£152 | 57.849.1
LDT b 77.44+49 58.84+1.6 79.54+4.4 43.642.1 42.0+1.6 88.34+2.5 84.5422 88.6+1.4 86.9+1.8 722425
l 79.445.0 60.84-2.1 86.6+3.0 51.3424 49241.6 94.6+1.8 91.342.0 941413 92.14+1.2 77.742.3
MLM b 77.34+4.0 54.343.9 81.34+73 38.143.8 37.04+3.2 78.44+10.0 73.347.9 80.0+9.9 73.849.6 65.94-6.6
r l 75.245.0 58.04+3.0 85.44+13.0 46.4+3.3 434429 90.8+7.6 84.14+6.8 90.2+7.1 87.446.2 73.44+6.1
MLM b 73.14+5.6 50.14+54 72.6+8.1 36.84-2.8 35.842.5 80.1+7.2 75.845.0 81.846.8 76.746.0 64.8+5.5
m l 66.44-8.6 44.5449 73.1473 41.94+4.0 38.74+4.2 83.6+6.5 78.146.0 85.0+6.0 77.74+6.9 65.44-6.0
classifier b 72.545.5 57.140.7 87.742.6 40.3+1.3 39.442.5 86.94+2.9 79.741.1 89.1+0.9 80.643.6 70.442.3
l 77.841.5 50.947.3 78.24+1.0 42.441.6 35.349.2 93.3+0.9 86.6+1.4 93.74+0.5 85.742.0 71.542.8

« Zero-shot v.s.

LDT (averaged across 3 random seeds, 14 patterns):

 Across a range of topic and sentiment datasets, our method is more
accurate than zero-shot by 17-19% absolute.
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Results and Evaluations

* LDT: LabelDescTraining

* LDT2onag: LDT finetuned on 20Newsgroup data

* MLM:;: verbalizer embedding randomly initialized

* MLMm: mismatched label and verbalizers

« classifier: classifier without patterns

N

AGNews  Yahoo DBPedia Yelp-5 SST-5 Yelp-2 SST-2 Amz-2 IMDB / Avg. \
_shot b 62.7+7.4 41.54+7.0 54.64+18.9 38.04+4.3 35.64+4.3 63.64+10.7 62.64+11.0 64.0410.3 69.9413.2 54.749.7
ZEIO-SNOL 1 68.0478 477482 639497 387478 350477  70.6+157  63.7+143  67.5+137 7414170 NS58.8+113
fpp—
LDT b 61.847.0 494452 729478 34.6+4.6 36.543.7 67.7+10.3 63.4+9.7 67.2+9.6 72.5+10.5 58.447.6
WNG 724468 544443 7194108 363457  36.6+7.1  63.4+130  56.9487 60.9+£102  67.5+£152 | 57.849.1
LDT b 77.44+49 58.84+1.6 79.54+4.4 43.642.1 42.0+1.6 88.34+2.5 84.5422 88.6+1.4 86.9+1.8 722425
l 79.445.0 60.84-2.1 86.6+3.0 51.3424 49241.6 94.6+1.8 91.342.0 941413 92.14+1.2 77.742.3
MLM b 77.34+4.0 54.343.9 81.34+73 38.143.8 37.04+3.2 78.44+10.0 73.347.9 80.0+9.9 73.849.6 65.94-6.6
r l 75.245.0 58.04+3.0 85.44+13.0 46.4+3.3 434429 90.8+7.6 84.14+6.8 90.2+7.1 87.446.2 73.44+6.1
MLM b 73.14+5.6 50.14+54 72.6+8.1 36.84-2.8 35.842.5 80.1+7.2 75.845.0 81.846.8 76.746.0 64.8+5.5
m l 66.44-8.6 44.5449 73.1473 41.94+4.0 38.74+4.2 83.6+6.5 78.146.0 85.0+6.0 77.74+6.9 65.44-6.0
classifier b 72.545.5 57.140.7 87.742.6 40.3+1.3 39.442.5 86.94+2.9 79.741.1 89.1+0.9 80.643.6 70.442.3
l 77.841.5 50.947.3 78.24+1.0 42.441.6 35.349.2 93.3+0.9 86.6+1.4 93.74+0.5 85.742.0 71.542.8

« Zero-shot v.s. LDT (averaged across 3 random seeds, 14 patterns):

 Across a range of topic and sentiment datasets, our method is more
accurate than zero-shot by 17-19% absolute.

« LDT is also more robust to choices regarding patterns and verbalizers.
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Multi-Domain Evaluation

AGNews test set Yahoo,c test set

| o—o—— o

i

test accuracy (%)
o
o

70
6o | L | Our method even
10 100 500 10100 500 improves over few-shot
Yelp-5 test set SST-5 test set out-of-domain
§;60 | g— classification in multiple
§ R settings.
Z:; 40 A
1|0 l(l)O 5(|)O 1IO 1(50 5([)0
—4— in-domain —e— out-of-domain - - - LDT
Figure 1: Domain transfer results, where the X-axis *Yahooaa is a sampled version of Yahoo

shows the number of training examples per label. dataset to match classes of AGNews
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Conclusion

* OQur method:

* Achieves 17 - 19% accuracy gains across 9 topic/

sentiment datasets over zero-shot setting
* More robust to pattern/verbalizer choices

* Domain agnostic, robust across domains
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