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Motivation and Contributions Evaluation and Results
* Pattern-verbalizer approach for zero-shot text classification test acc (%) AGNews Yahoo DBPedia Yelp2 SST-2  Amz2  IMDE
= Append a pattern to the text with a [MASK] LabelDescTraining 84.6+0.3 59.9+0.3 82.4+1.2 84.8+0.6 88.2+0.2 89.6+0.4 83.4+0.4
= Choose most probable verbalizer at [MASK] using masked language modeling (MLM) head
= Example: Overpriced, salty and overrated! The restaurant is [MASK]. Chu et al. (2021a) 638.8 5/.8 81.9 67.3 65.0 66.3 -
= Effective but sensitive to choice of patterns/verbalizers! Chu et al. (2021b) /5.1 60.0 88.6 : : : :
= Solution: train on LabelDesc data, which has descriptions of labels, rather than van de Kar et al. (2022)  79.2 56.1 80.4 92.0 85.6 92.0 86.7

annotated texts
= Topic: terms related to label, a definition, & a sentence from Wikipedia

= Sentiment: related terms and hand-crafted templates = hyperparameters (# of training steps, pattern for comparison, etc.) are tuned on 20 Newsgroups data

« Resylts = Comparison against SOTA results (RoBERTa-base) using a single pattern with LabelDescTraining

= 17-19% accuracy gains across 9 topic/sentiment datasets
= more robust to pattern/verbalizer choices

= robust across domains zero-shot LDT MLM, MLM,, classifier
Avg. 58.8::11.3 77.7::2.3 73.4::6.1 65.4::6.0 71 .5::2.8

= Test accuracies (%) with RoBERTa-large averaged across 9
datasets (the above + SST-5 and Yelp-5)

Overview
= LDT: LabelDescTraining
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LabelDescTraining improves over few-shot out-of-domain clas-
sification in multiple settings

Code: https://github.com/lingyugao/LabelDescTraining EMNLP 2023
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